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Abstract

We consider the problem of estimating parameters of a
model described by a system of equations which underlies a
wide class of computer vision applications. One method to
solve such a problem is the fundamental numerical scheme
(FNS) previously proposed by some of the authors. In this
paper, a more stable version of FNS is developed, with bet-
ter convergence properties than the original version. The
improvement in performance is achieved by reducing the
original estimation problem to a couple of problems of
lower dimension. By way of example, the new algorithm
has been applied to the problem of estimating the trifocal
tensor relating three views of a scene. Experiments car-
ried out with both synthetic and real images reveal the new
estimator to be more stable compared to the original FNS
method, and commensurate in accuracy with the Gold Stan-
dard maximum likelihood estimator.

1. Introduction

Fitting parametric models to data is a ubiquitous task in
computer vision. In a typical model, parameters describe a
relationship among image feature locations. The parameters
and image data pertaining to the model are combined in a
system of equations

f(x,θ) = 0,

where x is a length-k vector describing an ideal data
point, θ is a length-l vector of parameters, and f(x,θ) =
[f1(x,θ), . . . , fm(x,θ)]T is a vector of multi-objective
constraints satisfying fi(x,θ) = ui(x)Tθ, where ui(x) is
a length-l vector of polynomial functions in [xT, 1]T; in this
case the constraint vector can be succinctly written as

f(x,θ) = U(x)Tθ, (1)

where U(x) = [u1(x), . . . ,um(x)] is a l × m data car-
rier matrix. Examples of models of this type involving a

constraint vector with several components include a model
encoding an image-based homography [16], and analogous
models defining trifocal and quadrifocal tensors [4, 5, 14].
If observed data points x1, . . . ,xn come equipped with co-
variance matrices Λx1 , . . . , Λxn quantifying measurement
errors in the data, then a statistically meaningful estimate of
θ based on the compound set of the data points and their co-
variances can be obtained by minimising the multi-objective
approximated maximum likelihood (AML) cost function

JAML(θ;x1, . . . ,xn) =
n∑

i=1

f(xi,θ)TΣ(xi,θ)−1f(xi,θ),

where Σ(xi,θ) = ∂xf(xi,θ)Λxi∂xf(xi,θ)T. Importantly,
when the length m of the f(xi,θ) surpasses the common
codimension r of the submanifolds of the form {x ∈ Rk |
f(x,θ) = 0} with θ representing ideal parameters that
might have generated the data, the inverses Σ(xi,θ)−1 in
the above expression must be replaced by the r-truncated
pseudoinverses Σ(xi,θ)+r [3, 7]. The approximated max-
imum likelihood estimate of θ, defined as the minimiser
of JAML(•;x1, . . . ,xn) and denoted θ̂u

AML, exhibits a
nearly optimal statistical behaviour and—unlike the maxi-
mum likelihood estimate—is relatively inexpensive to com-
pute [13]. Once θ̂u

AML has been generated, additional
constraints—if they apply—involving the parameters alone
can be accommodated via an adjustment procedure. In
what follows we shall confine our attention to the estima-
tion phase that precedes adjustment, concentrating effec-
tively on unconstrained minimisation of JAML (this is un-
derlined by attaching the superscript “u” in the symbol for
the AML estimate).

Various methods are available for finding θ̂u
AML. One is

the fundamental numerical scheme (FNS) introduced in [1]
and extended in [13]. Another is the heteroscedastic errors-
in-variables (HEIV) scheme proposed by Leedan and Meer
[8] and further developed by Matei and Meer [12]. Both
techniques estimate the parameters of the model iteratively.
To ensure convergence, the methods often require a good

Digital Image Computing Techniques and Applications

0-7695-3067-2/07 $25.00 © 2007 Crown Copyright
DOI 10.1109/DICTA.2007.21

138



initial parameter estimate, but sometimes even an accurate
seed leads to divergence if the level of noise in the data is
too high.

The main purpose of this paper is to present a reduced
form of FNS, where only a subset of the total parameter
vector is estimated iteratively and the remaining parame-
ters are recovered in a single step based on the result of
the earlier iterative process. The reduced algorithm in ef-
fect replaces the original estimation problem with a couple
of problems of lower dimension. The algorithm is an ex-
tension to the multi-objective setting of the reduced FNS in
the single-objective case given in [2]. As is demonstrated
in the experimental section of the paper, the process of di-
mension reduction leads to significant benefits. Compared
to the full form [13], the reduced form of the algorithm re-
quires a less accurate initial estimate and enjoys better con-
vergence properties. While the paper is primarily concerned
with FNS, the optimality condition which underlies the re-
duced form of this algorithm can readily be exploited to ad-
vance a reduced form of HEIV.

2. Variational equation

The minimiser θ̂u
AML satisfies the necessary optimality

condition

[∂θJAML(θ;x1, . . . ,xn)]
θ=bθu

AML
= 0T (2)

with ∂θJAML the row vector of the partial derivatives of
JAML with respect to θ. We term this the variational equa-
tion. With the aid of (1) reformulated as

f(x,θ) = (θT ⊗ Im) vec(UT), (3)

where Im denotes the m × m identity matrix, and vec and
⊗ denote the vectorisation and Kronecker product operators
[9], respectively, it can be shown that

[∂θJAML(θ;x1, . . . ,xn)]T = 2Xθθ,

where Xθ = Mθ − Nθ is an l × l symmetric matrix with

Mθ =
n∑

i=1

UiΣ
−1
i UT

i , (4a)

Nθ =
n∑

i=1

(Il ⊗ ηT
i )Bi(Il ⊗ ηi), (4b)

Ui = U(xi) = [u1(xi), . . . ,um(xi)],

Bi = ∂xivec(UT
i )Λxi [∂xivec(UT

i )]T,

Σi = (θT ⊗ Im)Bi(θ⊗ Im), (4c)

ηi = Σ−1
i UT

i θ.

The variational equation (2) can accordingly be rewritten as

Xθθ = 0, (5)

where the evaluation at θ̂u
AML is dropped for clarity. In this

form the variational equation will serve as a basis for iso-
lating θ̂u

AML. As a consequence of JAML(•;x1, . . . ,xn)
being homogeneous of degree zero, θ̂u

AML will only be de-
termined up to scale.

If in calculating (∂θJAML)T the identity

f(x,θ) = (Im ⊗ θT) vec(U) (6)

is used instead of (3), then the ensuing expression for Mθ

will be identical with the one given in (4a), but the expres-
sion for Nθ will change to take the form

Nθ =
n∑

i=1

(ηT
i ⊗ Il)B∗i (ηi ⊗ Il),

B∗i = ∂xivec(Ui)Λxi [∂xivec(Ui)]T,

Σ∗i = (Im ⊗ θT)B∗i (Im ⊗ θ),

ηi = Σ∗−1
i UT

i θ.

While the latter equation for Nθ arises more frequently in
the literature [12], equation (4b) will prove more useful in
what follows.

3. Reduced variational equation

Assume that the carrier matrix U(x) can be written as

U(x) =
[
Z(x)
W

]
=

[
z1(x) . . . zm(x)
w1 . . . wm

]
, (7)

where Z(x) is a (l − m) × m matrix that depends on x (a
“pure measurement” matrix), and W is a m × m invertible
matrix that does not depend on x. Corresponding to this
splitting of U(x), the parameter vector θ will be subdivided
as

θ =
[
µ

α

]
, (8)

where µ and α are vectors of length l − m and m respec-
tively. The partitioning of U(x) and θ reflects that fact that
some components of θ, considered as indeterminates, ap-
pear in each of the equations of (1) only with constant co-
efficients. The vector α collects together those components
of θ that appear in (1) with pure constant coefficients. For
each i = 1, . . . ,m, the non-zero entries of the vector wi

represent the constant coefficients of the components of α

in the ith equation of (1). If, for instance, every equation of
(1) has exactly one parameter with a unity coefficient, then,
upon possible reordering of the equations of (1), we obtain
W = Im.

We shall now present a system of two equations that
jointly are equivalent to the variational equation (5). One
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of these equations involves only µ and can be solved sepa-
rately, and the other expresses α in terms of µ. We begin by
noting that, in view of (7),

vec(U(x)T) =
[
vec(Z(x)T)

vec(WT)

]
so that

∂xvec(U(x)T) =
[
∂xvec(Z(x)T)

0m2×k

]
.

Hence, for each i = 1, . . . , n, the lm× lm matrix Bi can be
represented as

Bi =
[

B0
i 0(l−m)m×m2

0m2×(l−m)m 0m2×m2

]
, (9)

where B0
i is the (l −m)m× (l −m)m matrix given by

B0
i = ∂xivec(ZT

i )Λxi [∂xivec(ZT
i )]T, Zi = Z(xi).

It is worth noting that this partitioning of Bi, crucial to the
subsequent development, results from taking (3) rather than
(6) as a point of departure.

Define a m×m matrix Σ′i by

Σ′i = (µT ⊗ Im)B0
i (µ⊗ Im). (10)

Clearly, Σ′i is positive semidefinite and depends only on the
ith element of data, its covariance Λxi , and the parameter
vector µ. Assume henceforth that each Σ′i is positive definite
and hence invertible. The inverses Σ′−1

i can now be used as
matricial weights to define a “centroid” of the Zi as follows:

Z̃ =
n∑

i=1

ZiΣ
′−1
i

( n∑
i=1

Σ′−1
i

)−1

.

Here
∑n

i=1 Σ
′−1
i is invertible because a sum of positive defi-

nite matrices is also positive definite. For each i = 1, . . . , n,
let Z′i = Zi − Z̃ be the ith pure measurement vector rel-
ative to Z̃. Letting η′i = Σ′−1

i Z′Ti µ, define the following
(l −m)× (l −m) matrices

M′µ =
n∑

i=1

Z′iΣ
′−1
i Z′Ti ,

N′µ =
n∑

i=1

(Il−m ⊗ η′Ti )B0
i (Il−m ⊗ η′i),

X′µ = M′µ − N′µ.

A fundamental result that can now be established is that θ =
[µT,αT]T satisfies the variational equation (5) if and only if
the following system of equations holds:

X′µµ = 0, (11a)

α = −(Z̃W−1)Tµ. (11b)

The first equation constrains solely µ and, therefore, can
be solved separately. Once µ is determined, α is readily
prescribed by the second equation. Of the two constraints,
the first plays a leading role and will be termed the reduced
variational equation.

If one defines the reduced AML cost function by

J ′AML(µ;x1, . . . ,xn) =
n∑

i=1

µTZ′iΣ
′−1
i Z′Ti µ,

then (11a) gains the meaning of the variational equation for
an optimiser of J ′AML. Interestingly, the µ-part of θ̂u

AML,
which satisfies (11a) as θ̂u

AML satisfies (5), turns out to be
the minimiser of J ′AML, denoted µ̂

u
AML, not just a critical

point of J ′AML. Moreover, both JAML and J ′AML attain a
common minimum value at θ̂u

AML and µ̂
u
AML, respectively.

4. Fundamental numerical scheme: full and re-
duced forms

A vector θ satisfies (5) if and only if it is a solution of
the ordinary eigenvalue problem Xθξ = λξ corresponding
to the eigenvalue λ = 0. This suggests an iterative method
for solving (5) whereby if θk−1 is a current approximate so-
lution, then an updated solution θk is a vector chosen from
that eigenspace of Xθk−1 which most closely approximates
the null space of Xθ; this eigenspace is, of course, the one
corresponding to the eigenvalue closest to zero in absolute
value. The process can be seeded with the normalised alge-
braic least squares (NALS) estimate, θ̂NALS. This estimate
results from operating the algebraic least-squares (ALS)
method on Hartley-normalised data [6]. ALS is a sim-
ple technique that computes the unconstrained minimiser of
the cost function JALS(θ) = ‖θ‖−2

∑n
i=1 θTUiUT

i θ, with
‖θ‖ = (

∑l
j=1 θ2

j )1/2, by performing singular value decom-
position on [U1, . . . , Un]T . The overall procedure consti-
tutes the fundamental numerical scheme (FNS) [1] and is
summarised in Figure 1.

1. Set θ0 = θ̂NALS.
2. Assuming θk−1 is known, compute the matrix Xθk−1 .
3. Compute a normalised eigenvector of Xθk−1 corre-

sponding to the eigenvalue closest to zero (in absolute
value) and take this eigenvector for θk.

4. If θk is sufficiently close to θk−1, then terminate the
procedure; otherwise increment k and return to Step 2.

Figure 1. Steps of the fundamental numerical
scheme.

A modification of this technique based on the reduced
variational system (11a) and (11b) is the reduced fundamen-
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tal numerical scheme (RFNS). Its steps are given in Fig-
ure 2.

1. Set µ0 = µ̂NALS.
2. Assuming µk−1 is known, compute the matrix X′µk−1

.
3. Compute a normalised eigenvector of X′µk−1

corre-
sponding to the eigenvalue closest to zero (in absolute
value) and take this eigenvector for µk.

4. If µk is sufficiently close to µk−1, then terminate the
procedure; otherwise increment k and return to Step 2.

5. Compute α as per (11b) using the limiting value µk and
the corresponding value Z̃(µk) from the previous step.

Figure 2. Steps of the reduced fundamental
numerical scheme.

In the case that the matrices Σ−i are replaced by the matri-
ces (Σi)+r in the expression for JAML, a similar change also
affects the matrices Xθk

of FNS. Moreover, recalling defi-
nitions (4c) and (10), and in view of (8) and (9), it follows
that Σi = Σ′i for i = 1, . . . , n , so the (Σ′i)

+
r supercede the

Σ′−1
i in the expression for J ′AML and in the X′µk

of RFNS.
Finally, we remark that a vector θ satisfying (5) can al-

ternatively be viewed as a solution of the generalised eigen-
value problem Mθξ = λNθξ corresponding to the eigen-
value λ = 1. This observation provides a starting point for
the development of the heteroscedastic-errors-in-variable
(HEIV) scheme in both full and reduced versions [2]. Each
version solves successively generalised eigenvalue prob-
lems analogous to the ordinary eigenvalue problems solved
by a corresponding version of FNS.

5. Experimental evaluation

We now present the results of comparative tests carried
out to evaluate the performance of RFNS. The application
considered is trifocal tensor estimation from point corre-
spondences. The following five algorithms were used to
compute tensors from both synthetic and real image data:

• NALS = Normalised Algebraic Least-Squares,
• HEIV = Heteroscedastic Errors-In-Variables scheme,
• FNS = Fundamental Numerical Scheme,
• RFNS = Reduced FNS,
• GS = Gold Standard.

GS is an advanced method [5] for minimising the max-
imum likelihood cost function JML given in (12) below.
For fair comparison, FNS, RFNS, and GS are seeded with
the generalised total least-squares (GTLS) tensor estimate
[8, 11] in order to match HEIV given in [11] and all meth-
ods have similar termination conditions. A post-correction
was applied to the final tensors obtained by FNS and RFNS

to enforce internal constraints, see [11]. HEIV estimates
were obtained by using the binary application supplied by
the authors of the original HEIV papers [10].

5.1. Trifocal tensor from point matches

A trifocal tensor of three views is an analogue of a fun-
damental matrix of two views. It encapsulates all the ge-
ometric relations between three views that are independent
of scene structure, but is more useful than the fundamental
matrix as it enters constraints not only on point correspon-
dences but also on line and combined point-and-line corre-
spondences across the images.

Let P = [I3,0], P′ = [A, e′] = [aj
i ], and P′′ = [B, e′′] =

[bk
i ] be three camera matrices, with A and B 3 × 3 matrices

describing the infinite homographies from the first to the
second and third images, respectively, and e′ and e′′ the
epipoles in the latter two views. The trifocal tensor is the
valence-3 tensor, with one covariant and two contravariant
indices, given by

T jk
i = aj

i b
k
4 − aj

4b
k
i , i, j, k = 1, 2, 3.

Let m = [m1,m2,m3]T, m′ = [m′1,m′2, 1]T, and
m′′ = [m′′1,m′′2, 1]T be the images of a point M in
3D space, taken from the cameras with correspond-
ing superscripts. The points are related through the
trifocal tensor by the four trilinear constraints [14]:

3X
i=1

(miT 11
i −mim′1T 31

i + mim′1m′′1T 33
i −mim′′1T 13

i ) = 0,

3X
i=1

(miT 12
i −mim′1T 32

i + mim′1m′′2T 33
i −mim′′2T 13

i ) = 0,

3X
i=1

(miT 21
i −mim′2T 31

i + mim′2m′′1T 33
i −mim′′1T 23

i ) = 0,

3X
i=1

(miT 22
i −mim′2T 32

i + mim′2m′′2T 33
i −mim′′2T 23

i ) = 0.

Letting m3 = 1, this system can be brought into the
form given in (1) by first concatenating the inhomoge-
neous coordinates of m, m′, and m′′ to obtain a single
item of data x = [m1,m2,m′1,m′2,m′′1,m′′2], next
rearranging the tensor entries into a length-27 vector θ,
and then setting f(x,θ) = [f1(x,θ), . . . , f4(x,θ)]T,
where f1, . . . , f4 are the corresponding expressions on the
left-hand side of the above system. Furthermore, U(x)
and θ can be partitioned as in (7) and (8) with W = I4

and α = [T 11
3 , T 12

3 , T 21
3 , T 22

3 ]T, respectively. Given
a data set {xi}n

i=1, the covariance of each datum xi is
assumed to be the default 6 × 6 identity matrix corre-
sponding to isotropic homogeneous noise in image point
measurement. Lastly, since the submanifolds of the form
{x ∈ R6 | f(x,θ) = 0}, with θ representing a genuine
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Figure 3. A synthetic 3D scene made of
equally spaced points inside a cuboid and
three cameras viewing the scene.

trifocal tensor, have codimension 3 [15], the matrices (Σi)+3
and (Σ′i)

+
3 must be used instead of the matrices Σ−1

i and
Σ′−1

i in the expressions for JAML and J ′AML, respectively,
and in related corresponding entities.

5.2. Synthetic image tests

Repeated experiments were performed in order to collect
results of statistical significance. A set of 3D points was
synthesised in a cuboid of dimensions 3 m × 1.5 m × 3 m
with 5 points equally spaced along each direction. The im-
ages were 3000× 2000 pixels in size, with square pixels of
side 9 µm. The 125 world points were captured by three per-
spective cameras with focal length of 3600 pixels, placed at
C̃1 = [−5, 3, 1.5]T, C̃2 = [0, 0, 0]T, and C̃3 = [3, 3, 1.5]T

to provide “true” matches. The center of the cuboid was
located 5 m away from the world origin at C̃2. Figure 3
depicts the 3D scene with the camera positions and orienta-
tions. Each true image point was then perturbed by homo-
geneous Gaussian noise with zero mean and standard de-
viation of σ = 2 pixels. The resulting noise-contaminated
triples of matching points were used as input to the five al-
gorithms.

For each of 200 experiments, all five methods were em-
ployed to compute a tensor estimate. Table 1 below shows
averages over the total number of trials. FNS failed to con-
verge 27 times in the 200 tests and so was not included in
the table. The first column considers the JAML cost func-
tion and shows that the iterative schemes produce estimates
which achieve very similar cost values.

The second column gives perhaps the results of a more
critical test coming from using the maximum likelihood

Table 1. Average JAML and JML cost values
for synthetic data experiments.

Methods JAML JML

NALS 1444.4 1444.4
HEIV 1426.8 1427.0
RFNS 1426.8 1426.8
GS 1427.0 1427.1

function, JML. For a trifocal tensor estimate θ̂ obtained
by a method other than GS, JML(θ̂) was calculated by min-
imising the reprojection error

n∑
i=1

(
d(mi, m̂i)2 + d(m′

i, m̂
′
i)

2 + d(m′′
i , m̂′′

i )2
)

(12)

over all points m̂i = N (PMi), m̂′
i = N (P̂′Mi), and

m̂′′
i = N (P̂′′Mi), where P̂′ and P̂′′ are retrieved from

θ̂ [5] and kept fixed. Note the difference with GS where to
find θ̂ minimising the reprojection error, the m̂i, m̂′

i, m̂
′′
i ,

and P̂′ and P̂′′ are allowed to vary simultaneously. Here
N (m) = m/m3 is a normalisation procedure whose ap-
plication ensures that the third coordinate of a given pla-
nar point is unity, and d(m,n) denotes the Euclidean dis-
tance between the planar points m and n that have been nor-
malised in the above sense. The Mi are initially obtained
by triangulating from the mi,m′

i, and m′′
i , and are then re-

computed in each optimisation step of an iterative scheme
(typically, and in our case, the Levenberg-Marquardt algo-
rithm) that minimises the reprojection error. Upon inspec-
tion, we find that RFNS estimates produce very competitive
cost function values in comparison with GS estimates, and
RFNS achieves the same accuracy as HEIV, which matches
expectations.

5.3. Real image test

Three images were acquired by a hand-held camera and
registered using a trifocal tensor computed with RFNS to
then build a 3D model, see Figure 4. To ensure conver-
gence, a modification of RFNS in step 3 became necessary.
With vi,k the normalised eigenvector corresponding to the
ith smallest eigenvalue of X′µk−1

, the update µk was defined

as the result of normalising
∑3

i=1(µ
T
k−1vi,k)vi,k.

Table 2 shows the results of applying the previous five
algorithms to the image data points. Note that HEIV, RFNS
and GS give the best results and are essentially inseparable.
FNS failed to converge to a sensible tensor estimate.
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(a) Original

(b) Reconstruction

Figure 4. Chemistry Department. (a) Each im-
age is 600× 800 pixels in size with 44 putative
points identified. (b) 3D model obtained from
RFNS trifocal tensor estimate.

Table 2. JAML and JML cost values for real
data experiment.

Methods JAML JML

NALS 57.1 57.1
HEIV 37.3 37.2
RFNS 37.2 37.2
GS 37.2 37.2

6. Conclusion

A novel parameter estimation method, RFNS, was pro-
posed for problems in which the relationship between pa-
rameters and image data is expressed as a system of equa-
tions. The original FNS method operates over the entire
parameter space, whereas the newly proposed method op-
erates on a subspace of lower dimension and recuperates
the missing degrees of freedom in a single final step. The
performance of RFNS was demonstrated on the problem of
trifocal tensor estimation. It has been shown that RFNS is
more reliable than the original version of the method, often
capable of generating a stable solution when FNS fails to

do so. When compared to GS, RFNS gives almost identical
results, both in terms of the JAML residual and GS’s ML
cost function residual.
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